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Abstract

In order to assess hydrologic and nonpoint source pollutant behaviors in a watershed with Soil and Water Assessment Tool
(SWAT) model, the accuracy evaluation of SWAT model should be conducted prior to the application of it to a watershed.
When calibrating and validating hydrological components of SWAT model, the Nash-Sutcliffe efficiency coefficient (EI) has
been widely used. However, the EI value has been known as it is affected sensitively by big numbers among the range of
numbers. In this study, a Web-based flow clustering EI estimation system using K-means clustering algorithm was developed
and used for SWAT hydrology evaluation. Even though the EI of total streamflow was high, the EI values of hydrologic
components (i.e., direct runoff and baseflow) were not high. Also when the EI values of flow group I and II (i.e., low and high
value group) clustered from direct runoff and baseflow were computed, respectively, the EI values of them were much lower
with negative EI values for some flow group comparison. The SWAT auto-calibration tool estimated values also showed
negative EI values for most flow group I and II of direct runoff and baseflow although EI value of total streamflow was high.
The result obtained in this study indicates that the SWAT hydrology component should be calibrated until all four positive EI
values for each flow group of direct runoff and baseflow are obtained for better accuracy both in direct runoff and baseflow.

keywords : K-means clustering EI estimation system, Nash-Sutcliffe efficiency coefficient, Soil and Water Assessment Tool,
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1. Introduction

Various hydrologic and water quality models have been
developed, enhanced, and utilized by numerous researchers
to identify efficient watershed management and study beha-
viors of non-point source pollution. Among these models,
such as Areal Nonpoint Source Watershed Environment
Response Simulation (ANSWERS) (Walling et al.,, 2003),
Agricultural Nonpoint Source (AGNPS) (Cho et al., 2008),
Groundwater Loading Effects of Agricultural Management
Systems (GLEAMS) (Cryer and Havens, 1999), Hydrological
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Simulation Program-Fortran (HSPF) (Bicknell et al., 1997),
Soil and Water Assessment Tool (SWAT) (Arold et al.,
1998), and Storm Water Management Model (SWMM)
(Rossman, 2009), SWAT model (Amold et al., 1998) has
been used to predict hydrologic and water quality changes
over time and space worldwide. The accuracy of SWAT
model should be evaluated prior to application of it to the
watershed to perform various watershed studies, such as
water resources management and water quality improve-
ment with various best management practices applied. In
SWAT model, we cannot expect simulations of sediment,
pesticide and nutrient with higher accuracies until satisfied
calibration and validation for the SWAT hydrological com-
ponent is achieved. In numerous researches with SWAT
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model, predicted total streamflow and measured total stream-
flow have been compared for calibration and validation of
hydrological component of SWAT model. Estimated direct
runoff and baseflow from all HRUs within subbasin are
routed through stream within subbasin and then routed to
the watershed main outlet. Thus accuracies of SWAT
estimated direct runoff and baseflow should be evaluated
separately to secure higher accuracy in estimated stream
flow, especially during low flow seasons.

SWAT is a complex model with many parameters that
can be calibrated complicatedly in manual. So, lots of time
and labors are inevitable for the calibration. Because of
these disadvantages in calibrating SWAT model manually,
the SWAT auto-calibration tool (Van Griensven et al.,
2002) was developed and integrated with the SWAT engine,
and has been widely used in SWAT application in recent
years (Gupta et al, 1999; Van Griensven et al., 2002).
When calibrating hydrologic component of the SWAT using
built-in auto-calibration tool, only total stream flow, except
each direct flow and baseflow component, is compared with
observed stream flow data for best-fit. This might indicate
that accuracies in SWAT estimated direct runoff and
baseflow cannot be guaranteed if only total streamflow is
used for calibration. In addition, its impacts on sediment,
chemicals, and nutrients won’t be negligible at the watershed
outlet.

When calibration and validation for various models have
been conducted, the Nash-Sutcliffe efficiency coefficient (EI)
(Nash and Sutcliffe, 1970) has' been widely used. However,
the EI was affected sensitively by big numbers among a
range of numbers. So, larger values in a time series stron-
gly influence the EI calculation. Moreover, the EI shown
as correlation between simulated data and measured data
lies between 1.0 (perfect fit) and 0. If the predictions of a
linear model are unbiased, then the EI will lie in the inter-
val from 0 to 1.0. For biased models, the EI may actually
be algebraically negative (McCuen et al., 2006). Thus, the
EI as correlation between predicted data and observed data
should lie in a positive value. If the EI appears as negative
values, it means that model calibration results is not able
to reflect runoff characteristics well. This EI is used as
objective function in SWAT automatic calibration tool (Green
and Van Griensven, 2008). This indicates that the SWAT
direct runoff and baseflow should be calibrated and validated
after removing effects of big numbers in each direct runoff
and baseflow component when auto-calibration tool with
the objective function using the EI is used in SWAT
application.

Therefore, the objectives of this study is to 1) develop
Web-based flow clustering EI estimation system to evaluate
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the EI values for flow group I (low flow group) and II
(high flow group) of SWAT estimated direct runoff and
baseflow separately to remove effects of big numbers; and
2) to compare EI values for flow group I and II of direct
runoff and baseflow components using the SWAT auto-cali-
bration tool and Web-based flow clustering EI estimation
system, developed in this study.

The results obtained in this study could provide valuable
guidance for hydrologic component calibration process
targeting higher EI values for both high and low flow
groups in SWAT estimated direct runoff and baseflow,
respectively. Also, water quality as well as hydrology will
be estimated better than before, and high efficient ground-
water management could be available due to accurate
analysis of low flow characteristics as well as high flow
characteristics with SWAT model.

2. Materials and methods

2.1. Literature review

2.1.1. Web GIS-based Hydrograph Analysis Tool (WHAT)

To evaluate the SWAT hydrologic component, the SWAT
estimated direct runoff and baseflow components should be
compared with measured direct runoff and baseflow. For
this, baseflow separation, or hydrograph analysis, is often
used since it is not readily feasible to obtain measured
direct runoff and baseflow at a watershed scale. Baseflow
characteristics can be efficiently used for various studies
(i.e., controlling irrigation withdrawals, making water supply
estimates and forecast, determining storage requirements for
maintenance of adequate flow for waste dilution, etc.). There
are many methods available to separate baseflow component
from stream flow (i.e., master groundwater depletion curve
method, straight line method, fixed base method, variable
slope method, etc.) (Chow et al., 1988). Among various
baseflow separation models, the Web GIS-based Hydrograph
Analysis Tool (WHAT) (http://cobweb.ecn.purdue.edu/~what)
was developed (Lim et al, 2005) to provide a Web GIS
interface for the 48 continental states in the USA for base-
flow separation using a local minimum method, the BFLOW
digital filter method, and Eckhardt filter method. Also, the
WHAT system provides interface for international users so
users can upload their flow data to the WHAT server for
baseflow separation with a couple of mouse clicks in the
web browser interface. The Web Geographic Information
System (Web GIS) version of the WHAT system accesses
and uses U.S. Geological Survey (USGS) daily streamflow
data from the USGS web server. Two digital filter methods,
the BFLOW filter and the Eckhardt filter methods, were
incorporated into the WHAT system.
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The filtered base flow data using the Eckhardt filter
method in the WHAT system were compared with the
results using the BFLOW filter method for 50 gauging
stations in Indiana, because the BFLOW results had previ-
ously been compared with manually separated and measured
base flow data and showed a good match (R? value of 0.83).
The EI and the R® values for this comparison were over
0.9 for all gauging stations, which indicates the filtered
base flow using the Eckhardt filter method will typically
match measured baseflow. Although baseflow separation
algorithms in the WHAT system cannot consider external
factors, such as reservoir releases and snowmelt that can
affect stream hydrographs, the WHAT system can be effi-
ciently used for hydrologic model calibration and validation
(Lim et al., 2005).

2.1.2. K-means clustering algorithm

When evaluating SWAT performance by comparing
SWAT estimated direct runoff and baseflow with measured
direct runoff and baseflow data separately using the EI
statistic, calibrated SWAT direct runoff and baseflow
results might not match measured direct runoff and baseflow
well enough if one look into closer low flow regime of
direct runoff and baseflow because the EI value could be
affected by big numbers in simulated direct runoff and
baseflow, respectively, Thus, this limitation should be
eliminated in the EI calculation by splitting flow data
(either direct runoff or baseflow) into two groups using
commonly used data clustering, grouping algorithm. Cluste-
ring is one of the widely used knowledge discovery
techniques to reveal structures in a data set that can be
extremely useful to the analyst. As clustering do not make
any statistical assumptions to data, it is referred to as
unsupervised learning algorithm. In general, the problem of
clustering deals with partitioning a data set consisting of n
points embedded in m-dimensional space into k distinct set
of clusters, such that the data points within the same
cluster are more similar to each other than to data points
in other clusters (Cao et al., 2009).

A common method is to use data to learn a set of centers
such that the sum of squared errors between objects and
their nearest centers is small. Clustering techniques are
generally classified as partitional clustering and hierarchical
clustering, based on the properties of the generated clusters.
The partitional clustering technique usually begins with an
initial set of randomly selected exemplars and iteratively
refines this set so as to decrease the sum of squared errors.
Due to the simpleness, random initialization method has
been widely used (Cao et al., 2009). The term “K-means”
was first used by James MacQueen in 1967 (MacQueen,

1967), though the idea goes back to Hugo Steinhaus in
1956 (Steinhaus, 1956). The standard algorithm was first
proposed by Stuart Lloyd in 1957 as a technique for
pulse-code modulation, though it wasn't published until
1982 (Lloyd, 1957). Among clustering formulations that
are based on minimizing a formal objective function, perhaps
the most widely used and studied method would be the
K-means clustering. Given a set of n data points in real
d-dimensional space, Rd, and an integer K, the problem is
to determine a set of K points in Rd, called centers, so as
to minimize the mean squared distance from each data
point to its nearest center. This measure is often called the
squared-error distortion and this type of clustering falls
into the general category of variance based clustering. The
first step of the K-means clustering algorithm is to determine
the centroid coordinate. The next step is to determine the
distance of each object to the centroids. The third step is
to group the object based on minimum distance. This process
can be iterated until the k centroids do not move any
more (Zhou and Liu, 2008).

2.2. Study area

Soyanggang-dam watershed at Gangwon province, Korea
was selected (Fig. 1) to demonstrate this study because
long-term flow data with 12 precipitation gauging stations
for this study watershed were available. The Soyanggang-
dam watershed is located in typical monsoon climate area.
The coefficient of flow regime at this study watershed is
huge due to greater precipitation during the summer.

2.3. Development of the Web-based flow clustering El
estimation system for SWAT Hydrologic Component
Calibration

As stated earlier, the EI is affected by big numbers

among a range of numbers. In this study, Web-based flow
clustering EI estimation system was developed to evaluate
SWAT estimated direct runoff and baseflow by calculating
El values after clustering direct runoff and baseflow data
into 2 groups, respectively. For this, commonly used K-
means clustering algorithm (MacQueen, 1967; Steinhaus,
1956) was utilized to develop Web-based flow clustering
EI estimation system since it has been widely used in data
clustering studies. In this study, the web interface was
developed to provide this tool to SWAT users worldwide.
The Web-based flow clustering EI estimation system
(http://www.envsys.co.kr/~fcei) (Fig. 2) was developed using
the Perl/CGI and GNUPLOT to calculate the EI values of
high-flow and low-flow groups of direct runoff and baseflow
component of the SWAT estimation. As the Web-based flow
clustering EI estimation system, developed in this study, is
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Fig. 1. Location of the Soyanggang-dam watershed.

2 Flow Clustering £l Estimation Module - Microsoft Internet Explorer

< A & ) A » B oo in &
@'G LJEQQ/"%{@ - ﬂ!ﬁ%ﬁﬁ
Ele £k  Yiew Favorkes Took Heb
Agddress | 48] hetp:Fjwww, envsys.co.krj~fcelf

0 8,00016,000

32,000 48,000

- ) Kilometers

to compute Nash-Sutcliffe Coefficient for Clustered Values

« Example Dataset 1 ~« Example Dataset2

Enter Measured/Simulated Flow Data - SWAT RCH Flow Out with Measure Data

« Example Dataset 3

Cluster Values

Low value group
(=Flow group I).

Simulated Measured | BUUPEL T Flow Clustering £ Estimation Module - Microsoft Internet Fxplorer
%3 5504 al 958 PN S . o v
G T = © O0-RRAG PO 2L E-UARES
1730 511 87 Be ER Yew Favortes ook Hep
753 5 825 (8 e |
Lo = e Agdress | 48] htp: e enwsys.co kej~Foeif e
676 263 1033
609 285 1078
563 467 1042
548 632 1101
562 ooy 1254 Flow Clustering El Estimation Module [Ver. 0.2]
£ 571 4413
s 13 = E| for Cluster 1 (Low Flow)
21 817 3498 { {
5574 05 2180 0.982 0.820 0.359
45 9889 774
29%2 1165 4117 Conparison of Measured Data with Simulated Data
3130 62 “

High value group
(=Flow group I}

30
Sinulated Data

Fig. 2. Interface of the Web-based flow clustering EI estimation system.
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Fig. 3. Flow diagram of the Web-based flow clustering EI
estimation system.

Web-based user-friendly module, most SWAT users could
handle this EI estimation system with comparative ease.

The condensed processes of development of the Web-
based flow clustering EI estimation system are given as
follows. The EI error which is highly depending on big
numbers among various data was analyzed; the overall K-
means clustering algorithm was analyzed; data grouping
interface was developed using the K-means clustering algo-
rithm and Perl/CGI and GNUPLOT,; the EI and K-means
clustering algorithm were incorporated; calculation of the
EI through tabular and graphical outputs are provided for
the SWAT calibration.

The process of the calibration of the SWAT simulated
flow using the Web-based flow clustering EI estimation
system is given as follows (Fig. 3). First, run SWAT model
with SWAT input parameter set; and then, obtain simulated
data through the summary output file (output.std) in AVS-
WATX; calculate the EI of simulated data and observed
data using the Web-based flow clustering EI estimation
system, developed in this study; check the EI values of
flow group I and II of direct runoff as a positive value or
not; check the EI values of flow groups I and II of base-
flow as a positive value or not; if the EI values of 4 data
groups (flow groups I and II of direct runoff and flow
groups I and II of baseflow dataset) are all positive values,
go to next step; else go back to first step until meet the

criteria (all positive EI values for 4 flow groups); the result
value and optimal calibration parameters are come up with.
Flow group I is low value group and flow group II is high
value group, clustered with K-means clustering algorithm;
low value and high value group hereafter called “flow group
I and II” in this paper. Also, EI L and EI H are represen-
tative EI value of flow group I and II in direct runoff and
baseflow, respectively. Even though the calibration with the
Web-based K-means clustering EI estimation module could
get more accurate data than before, it spend lots of time
in performing the SWAT calibration. Because it is calibration
process for users to analyze Els of direct runoff and base-
flow in detail and examine one by one manually.

24. Direct runoff and baseflow separation using WHAT

To evaluate the EI values for high and low flow groups
of SWAT estimated direct runoff and baseflow values,
measured flow data also should be first separated into
direct runoff and baseflow components. Thus, direct runoff
and baseflow were separated from measured flow data (year
2002 ~2005) of the Soyanggang-dam watershed, which
were acquired from WAMIS (Water Resources Management
Information System)(www.wamis.go.kr). The WHAT system
provides three base flow separation modules; the local
minimum method, parameter digital filter, and Eckhardt
filter methods. The BFImax and filter parameter for the
WHAT system were calculated through the BFImax analyzer
in the WHAT system, and then daily direct runoff and
baseflow were separated through the WHAT system.

2.5. Evaluation of the Web-based flow clustering El esti-

mation system

To demonstrate why the Web-based flow clustering EI
estimation system is needed for accurate calibration of
SWAT direct runoff and baseflow components, three case
studies were carried out as follows. First, comparison of
the SWAT manual calibration method vs. calibration with
the Web-based flow clustering EI estimation system, and
then the SWAT auto-calibration tool vs. calibration with
the Web-based flow clustering EI estimation system was
conducted. Third, EI values of total streamflow, direct run-
off, and baseflow from the other SWAT application by Qi
and Grunwald (2005) vs. using the Web-based flow clustering
EI estimation system were compared.

The SWAT model input data (i.e., DEM, Land use, Soil,
long-term weather data) (Table 1) were prepared for the
study watershed to evaluate the Web-based flow clustering
EI estimation system in calibrating SWAT hydrologic com-
ponent. To simulate hydrology and nonpoint source loadings
at steep sloping watersheds, SWAT ArcView GIS Patch II
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Table 1. The SWAT model input parameters

Data type Scale

Data description/property

Data source

Topography 1:5,000

Elevation, slope, Slope length

Korea national geographic information institute

Land use 1:25,000

Management information

Land use classification, Area,

Korea ministry of environment

Soils geographic Database

1:25,000 [Soil physical and chemical properties

Korea rural resource development institute

Weather -

Relative humidity

Daily precipitation, Temperature,
Solar radiation, Wind speed,

WAMIS

(Kim et al., 2009; available at http://www.EnvSys.co.kr/
~swat)) was applied to minimize the effects of watershed
delineation in SWAT estimated values. The SWAT ArcView
GIS Patch II should be used if average slope of the water-
shed is over 25% (Kim et al., 2009). The average slope
of Soyanggang-dam watershed, study watershed in this
study) is about 40.6%.

2.5.1. Comparison of the SWAT manual calibration vs. calibration
with clustering El estimation system

The SWAT manual calibration was carried out by com-
paring total stream flow with measured streamflow until
higher EI value is achieved. Also, for comparison of SWAT
manual calibration with calibration using the Web- based
flow clustering EI estimation system, the SWAT model
direct runoff and baseflow were calibrated until all 4
positive EI values (EI_L and EI H of direct runoff, and
EI L and EI H of baseflow) of flow groups I and II of
direct runoff and baseflow are achieved using the Web-
based flow clustering EI estimation system. In the SWAT
model, there are lots of parameters to be calibrated for
best-fit between simulated and measured flow. In this
study, several flow sensitive parameters (i.e., CN, ALPHA
BF, GW_DELAY, GW_REVAP, and GWQMN) were
adjusted manually for best-fit between simulated values and
measured values. The calibrated parameter ranges were
limited according to van Griensven et al. (2006) and Neitsch
et al. (2005). Once the higher EI value from total stream
flow comparison was achieved, the SWAT direct runoff
and baseflow estimated with calibrated parameters using
streamflow were compared with those calibrated using the
Web-based flow clustering EI estimation system. In addition,
EI L and EI H values of direct runoff and baseflow
estimated with calibrated parameters were compared with
those calibrated using the Web-based flow clustering EI
estimation system.

2.5.2. SWAT auto-calibration tool vs. calibration with Web-based
flow clustering El estimation system

The AVSWAT has included the auto-calibration procedure

that is used to obtain an optimal fit of process parameters.
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The SWAT auto-calibration tool in AVSWAT was performed
using statistical analysis to determine the reliability between
the predicted and observed data. A parameter sensitivity
analysis tool is embedded in SWAT to determine the rela-
tive ranking of which parameters most affect the output
variance due to input variability. It has objective functions
which are aggregated to a single global criterion determined
by optimal fit. The goodness-of-fit measure used was the
EI (Green and Griensven, 2008). In this study, the EI values
of total streamflow, direct runoff, and baseflow and EI
values of flow group I (EI.L) and II (EI H) clustered
from direct runoff and baseflow were compared with using
the SWAT auto-calibration tool and Web-based flow
clustering EI estimation system.

253. Analysis of the El values of Streamflow, direct runoff,

and baseflow from the other SWAT application

Even though total streamflow, direct runoff, and baseflow
has a good correlation between the simulated and observed
data, flow group I and II could be bad fit between them.
So, the research results by Qi and Grunwald (2005) was
selected and hydrological components from Qi and Grun-
wald (2005)’s study was evaluated to investigate EI value
of flow group I and II in direct runoff and baseflow using
the Web-based flow clustering EI estimation system.

Qi and Grunwald (2005) evaluated the application of
SWAT model for total streamflow, direct runoff, and base-
flow occurring at 4 subwatersheds in the Sandusky watershed
in USA. Exact numeric data for total stream flow, direct
runoff, and baseflow were not provided in the research
paper. Only graphs for total streamflow, direct runoff, and
baseflow at 5 stations (i.e., Bucyrus, Fremont, Honey, Rock,
and Tymochtee) were provided. In this study, result graphs
of the study by Qi and Grunwald (2005) were interpreted
to a numeric data to calculate the EI values using the
Web-based flow clustering EI estimation system. These
data were used to evaluate the EI values of flow group I
(ELL) and II (EI_H) of direct runoff and baseflow using
the Web-based flow clustering EI estimation system.

3. Results and discussion
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3.1. Direct runoff and baseflow separation using the
WHAT system

Daily flow data of the Soyanggang-dam watershed, mea-
sured streamflow data, were separated using the WHAT
system. Daily direct runoff and baseflow were divided
through the WHAT system with the BFImax and filter
parameters. The monthly average (year 2002 ~2005) total
streamflow (measured data) were 210,717,540 m3/month,
and direct runoff and baseflow (measured/filtered data)
were 151,743,348 m’/month and 58,974,192 m’/month,
respectively (Fig. 4).

According to the result graph as shown in Fig. 4 below,
monthly average direct runoff and baseflow showed a ratio
of 0.72 (72%) to 0.28 (28%) of total streamflow. In June
2005, direct runoff represented the highest number and
monthly precipitation was about 280 mm while monthly

average precipitation was 133 mm during 2002 ~2005. At
this time, direct runoff and baseflow were 147,618,720
m’*/month (92%) and 13,068,000 m’*/month (8%) respectively.
In Oct. 2004, baseflow appeared to be the highest and
monthly precipitation was approximately 4 mm while
monthly average precipitation was 133 mm during 2002 ~
2005. Direct runoff and baseflow showed 11,105,856 mY/
month and 42,142,464 m’/month and their proportions were
21% and 79% individually at this moment.

3.2. Comparison of the SWAT manual calibration vs.
calibration with the Web-based flow clustering El
estimation system

Fig. 5(a) shows the comparison of simulated total stream-

flow and measured total streamflow with the EI value of
0.95. The monthly average simulated total streamflow for

0
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Fig. 5. Monthly total streamflow, direct runoff, and baseflow w/ the SWAT manual calibration.

(w/c : The SWAT manual calibration)

year 2002 ~2005 was 232,928,714 ma/month, and direct
runoff and baseflow were 225,528,610 m*/month and
7,400,104 m*/month separately. Daily direct runoff and
baseflow were divided through the WHAT system with the
BFImax and filter parameters. The monthly average (year
2002 ~2005) direct runoff and baseflow (measured/filtered
data) were 151,743,348 m’/month and 58,974,192 m®/month,
respectively (Fig. 5(b)). As shown in Fig. S5(a), SWAT
users can judge that the SWAT calibration using only total
stream flow was done reasonably well because of higher
EI value of 0.95. However, simulated direct runoff values
more or less overestimate measured direct runoff (EI value
of 0.61) and simulated baseflow values were much lower
than measured baseflow (EI value of -0.27). This result

FEEMN RSP E X M7 FM1E, 2011

indicates that calibration using total streamflow seemed to
be impeccable but direct runoff and baseflow data would
not.

Fig. 6(a) shows the comparison of simulated total stream
flow and measured total stream flow with EI value of
0.93 using Web-based flow clustering EI estimation system.
Here, flow group I and II of direct runoff and baseflow
were calibrated using flow clustering EI estimation system
until all positive EI L and EI_H of direct runoff and
baseflow were obtained. The EI value of 0.93 was achieved
with the calibrated parameters for direct runoff and baseflow
calibration using the flow clustering EI estimation system.
The monthly average simulated total streamflow for year
2002 ~ 2005 was 228,970,298 m3/m0nth, and direct runoff
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Fig. 6. Monthly total streamflow, direct runoff, and baseflow w/ the Web-based flow clustering EI estimation system.

and baseflow were 168,824,829 m’/month and 60,145,469
m’/month separately. The monthly average (year 2002 ~
2005) direct runoff and baseflow (measured/filtered data)
were 151,743,348 m’/month and 58,974,192 m’/month,
which were obtained from WHAT system (Fig. 6(b)).
While accuracy of total streamflow with the SWAT
manual calibration is very similar to that with the Web-
based flow clustering EI estimation system, direct runoff
and baseflow between them look different (Fig. 5(b), 6(b)).
When comparing each hydrological component between
with the SWAT manual calibration and Web-based flow
clustering EI estimation system, direct runoff in Fig. 6(b)
decreased by about 25% than that in Fig. 5(b) and base-
flow in Fig. 6(b) increased by about 713% than that in

Fig. 5(b). This increased baseflow value has resulted in
increased EI value (-0.27 to 0.92) of baseflow estimation.

the EI value of 0.95 was
achieved for total streamflow estimation. However, the

With manual calibration,

EI L and EI H values of direct runoff and baseflow, esti-
mated using the adjusted parameters through streamflow
calibration process, were 0.63, -2.43, 0.63, -9.46 and -0.46,
respectively (Table 2). With the Web-based flow clustering
El estimation system for more accurate calibration, the EI
values of flow group I and II of direct runoff and baseflow
in the Soyanggang-dam watershed were estimated. The EI
value of total stream comparison was 0.93. The EI_L and
EI_H values of direct runoff and baseflow, estimated using
the adjusted parameters through streamflow calibration pro-
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Table 2. Comparison of the EI values of the total streamflow, direct runoff, and baseflow I

: Calibration for Calibration for Calibration for
Station :
total streamflow direct runoff baseflow
EI El EI L El H EI EI L El H
Soyanggagng-dam w/" 0.93 0.87 0.67 0.17 0.92 0.77 0.49
Soyanggang-dam_m/c 0.95 0.61 0.63 243 -0.27 -9.46 -0.46

‘Soyanggang-dam_w/ : Calibration of total streamflow, direct runoff, and baseflow

With the Web-based flow clustering EI estimation system

“Soyanggang-dam_m/c : Calibration of total streamflow, direct runoff, and baseflow

With the SWAT manual calibration

cess, were 0.67, 0.17, 0.77, and 0.49, respectively (Table 2).

The EI values of total streamflow comparisons were very
alike when manual calibration and calibration using the
Web-based flow clustering EI estimation system were per-
formed (EI values of 0.95 and 0.93, respectively). On the
contrary, the EI L and EI H values of direct runoff and
baseflow components were negative, except EI L value of
direct runoff when manual -calibration was performed.
While, the EI L and EI H values of direct runoff and
baseflow were all positive with the Web-based flow clus-
tering EI estimation system. These results imply that SWAT
hydrology component calibration using solely total stream-
flow could result in errors of baseflow estimation, especially
during low flow condition (Table 2).

3.3. The SWAT auto-calibration tool vs. calibration with
the Web-based flow clustering El estimation system

The SWAT auto-calibration tool was utilized to calibrate
the hydrology component of SWAT. The EI value of total
streamflow was 0.91, which is somewhat similar to that
obtained from manual calibration and calibration using
flow clustering EI estimation system (0.95 and 0.93, respec-
tively). However, even with the auto-calibration tool, embe-
dded in the SWAT, the EI L and EI H values of direct
runoff and baseflow were 0.01, -0.30, -0.87, and -5.09
(Table 3). As shown in this study, the higher EI value
from total streamflow comparison does not guarantee higher
accuracies in estimated direct runoff and baseflow estimation.

3.4. Analysis of El values of Streamflow, direct runoff,
and baseflow from the other SWAT application

While the EI values of the total streamflow, direct runoff,
and baseflow in the research result by Qi, and Grunwald
(2005) were positive values, most EI values (EI L and
EI_H) of direct runoff and baseflow were negative values
after clustering direct runoff and baseflow into each flow
group I (ELL) and II (EI_H) using the Web-based flow
clustering EI estimation system as shown in Table 4.

In contrast to the EI values in the study by Qi and
Grunwald (2005), which were most negative values (-10.69
~ -0.10), the EI values of each flow group I (EI_L) and
II (EI_H) in direct runoff and baseflow in the Soyanggang-
dam watershed were all positive values. EI L and EI H of
direct runoff and baseflow showed 0.67, 0.17, 0.77, and
0.49 respectively. Thus, SWAT model should be calibrated
for various flow regime (flow group I and II of direct
runoff and baseflow), not only using streamflow, or either
direct runoff and baseflow.

4. Conclusion

When hydrological component has been calibrated and
validated by various SWAT users, most SWAT users have
evaluated accuracy of hydrological component through only
total streamflow using the EL As the EI was affected
sensitively by big numbers among a range of data,
hydrologic modeling had problems for accurate estimation
in the dry (low flow) season. Thus, many researches have
been conducted to develop better statistic than the EI to
remove the effects of big numbers in SWAT estimation.

Thus, in this study the Web-based flow clustering EI
estimation system was developed and applied in the

Table 3. Comparison of the EI values of the total streamflow, direct runoff, and baseflow II

Station Calibration for Calibration for Calibration for
total streamflow direct runoff baseflow
El El EI L El H El EIL L EL H
Soyanggang-dam_w/‘ 0.93 0.87 0.67 0.17 0.92 0.77 0.49
Soyanggang-dam_a/c™ 091 0.57 0.01 -0.30 -0.57 -0.87 -5.09

"Soyanggang-dam_w/ : Calibration of total streamflow, direct runoff, and baseflow
With the Web-based flow clustering EI estimation system
Calibration of total streamflow, direct runoff, and baseflow

"Soyanggang-dam_a/c :
With the SWAT auto-calibration tool
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Table 4. Comparison of the EI values of the total streamflow, direct runoff, and baseflow III (Qi and Grunwald, 2005)

Station Calibration for Calibration for Calibration for
total streamflow direct runoff baseflow
EI Bl ELL" ELH El ELL" ELH
Bucyrus 0.31 0.31 0.43 -10.69 X X X
Fremont 0.79 0.65 -0.10 -1.27 0.60 -0.10 -0.80 ]
Honey 0.66 0.64 -2.02 -0.93 X X X
Rock 0.81 0.54 0.51 -4.88 X X X
Tymochtee 0.84 0.43 0.17 -6.05 X X X
Soyanggang-dam w/ 0.93 0.87 0.67 0.17 0.92 0.77 0.49

'EI : Nash and Sutcliffe effective index for total data set;

"EI_L : Nash and Sutcliffe effective index for low value group data set (flow group I);
EI_H : Nash and Sutcliffe effective index for high value group data set (flow group II);
""Soyanggang-dam_w/ : Calibration of total streamflow, direct runoff, and baseflow
With the Web-based flow clustering EI estimation system

s

x : No data

Soyanggang-dam watershed. The Els of each flow group I
and II, four Els, clustered from direct runoff and baseflow
was calculated and it showed four EI values (i.e., EI L
and EI H of direct runoff were 0.67, 0.17 and EI L and
EI_H of baseflow were 0.77, 0.49) were bigger than zero.

With all positive EI values (EI_L and EI H of direct
runoff and baseflow components), higher EI values for
direct runoff comparison (EI of 0.87) and baseflow (EI of
0.92) were obtained. In addition, the EI value of 0.93 was
achieved for total streamflow comparison.

With the SWAT manual calibration, even though the EI
of total streamflow was very high (0.95), the EIs of each
flow group I and II, four EI values were low (ie., EI L
and EI H of direct runoff were 0.63, -2.43 and EI L and
EI H of baseflow were -9.46, -0.46). Also with SWAT
auto-calibration tool, the EI of total streamflow was high
(0.91). However, the Els of each flow group I and II, four
EI values were lower than those with manual calibration
(i.e., EI.L and EI H of direct runoff were 0.01, -2.30 and
EI L and EI H of baseflow were -0.87, -5.09).

Therefore, calibration and validation of hydrological
component in the SWAT should be performed using the
Web-based flow clustering EI estimation system developed
in this study for more accurate hydrologic component
estimation, especially during low flow season, or baseflow.

2 o
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